首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25787篇
  免费   2202篇
  国内免费   1020篇
电工技术   1501篇
技术理论   2篇
综合类   1715篇
化学工业   4230篇
金属工艺   1407篇
机械仪表   1707篇
建筑科学   2093篇
矿业工程   742篇
能源动力   693篇
轻工业   1822篇
水利工程   484篇
石油天然气   1627篇
武器工业   239篇
无线电   2805篇
一般工业技术   3046篇
冶金工业   1205篇
原子能技术   236篇
自动化技术   3455篇
  2024年   51篇
  2023年   410篇
  2022年   648篇
  2021年   945篇
  2020年   775篇
  2019年   564篇
  2018年   686篇
  2017年   811篇
  2016年   692篇
  2015年   999篇
  2014年   1179篇
  2013年   1472篇
  2012年   1569篇
  2011年   1785篇
  2010年   1541篇
  2009年   1422篇
  2008年   1474篇
  2007年   1313篇
  2006年   1487篇
  2005年   1357篇
  2004年   855篇
  2003年   803篇
  2002年   782篇
  2001年   701篇
  2000年   649篇
  1999年   792篇
  1998年   590篇
  1997年   541篇
  1996年   456篇
  1995年   369篇
  1994年   322篇
  1993年   214篇
  1992年   192篇
  1991年   142篇
  1990年   116篇
  1989年   92篇
  1988年   77篇
  1987年   36篇
  1986年   27篇
  1985年   24篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
2.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
3.
Osteogenic glue that reproduces the natural bone composition represents the final frontier of orthopedic adhesives with the potential to revolutionize surgical strategies against comminuted fractures. However, it is difficult to achieve an all-in-one formula, which could provide flexible and reliable adhesiveness while avoiding interfering with or even promoting the healing of glued fractures. Herein, an osteogenic glue characterized by inorganic-in-organic integration between amine-modified mesoporous bioactive glass nanoparticles (AMBGN) and bioadhesive gelatin-dextran network (GelDex) is introduced as an all-in-one tool to flexibly adhere and splice bone fragments and subsequently guide fracture healing during degradation. Relying on such integration, a 4-fold improvement in cohesiveness is presented, followed by a nearly 5-fold enhancement in adhesive strength in ex vivo porcine bone samples. The reversible and re-adjustable adhesiveness also enables glue to effectively splice intricate fragments from highly comminuted fractures in the rabbit radius in an in vivo environment. Moreover, well-preserved organic–inorganic integrity during degradation of the glue guides sustained interfacial osteogenesis and achieve satisfying healing outcomes in glued fractures, as observed by the 2-fold improvement in biomechanical and radiological performance compared with commercially available cyanoacrylate adhesives. The current findings propose an all-in-one solution for the fixation of bone fragments during surgery.  相似文献   
4.
采用在线汞测试方法,以山西省低热值煤电厂中掺烧的煤泥为研究对象,利用实验室小型流化床,研究煤泥中汞的热转化行为差异及共性特征、影响煤泥热转化过程中汞迁移的关键因素,以揭示煤泥热转化过程中汞污染物的迁移机理。结果表明,同一种煤泥,相同气氛,800、900、1 000 ℃下,燃烧温度对煤泥中的汞的释放比例没有变化;相同温度,汞的释放比例为氮气>空气>氧气。3种煤泥在相同燃烧条件下,汞的释放特征相似,元素汞的释放量和释放比例差异较大。释放量与煤泥中的汞含量正相关,释放比例与煤泥中汞的赋存形态有一定关系。  相似文献   
5.
Rong  Xiaofeng  Yang  Yumin  Liu  Xuefei  Xiao  Wenjun  Yang  Cheng  Wang  Zhen  Liu  Zhaohui  Xiao  Yuanni  Wang  Degui  Xu  Huiying  Cai  Zhiping 《Journal of Materials Science: Materials in Electronics》2022,33(27):21569-21575
Journal of Materials Science: Materials in Electronics - In this paper, a Q-switched and three-color operation of Neodymium-doped silica all-fiber laser is realized, in which, a few-layer...  相似文献   
6.
7.
Liu  Xing  Cai  Zhaoyang  Xu  Yan  Zheng  Huihui  Wang  Kaige  Zhang  Fengrong 《Water Resources Management》2022,36(4):1463-1479

With rapid socioeconomic and population growth, high-quality arable land resources are decreasing daily, especially in arid areas, which makes arable land reserve resources an important way to supplement arable land. How to accurately evaluate cultivated land reserve resources is of great significance to socioeconomic development and sustainable land use in arid areas. Therefore, this study selected Hangjin Banner as a typical area and calculated the regional maximum available irrigation water based on the principle of regional water balance. Then, the "irrigation area check algorithm" was used to evaluate the amount of cultivated land reserve resources, and policy recommendations were proposed for the development and utilization of cultivated land resources. The results showed that Hangjin Banner had no cultivated land reserve resources under the current irrigation method and had cultivated land reserve resources under the efficient water-saving irrigation method, but only in the southern zone during normal and partially abundant water years. Therefore, we believe that arid areas should adhere to the "set land by water" principle, the allocation of water resources should be optimized, and cultivated land resources with high quality should be utilized based on the actual regional conditions.

  相似文献   
8.
9.
10.
Fe2O3 with high theoretical capacity, low cost, and environmental friendliness has been attracted great attention in lithium-ion batteries (LIBs), which however is limited by low rate capability and fast capacity fading owing to low electronic conductivity, self-aggregation, and sever volume expansion. CNTs with excellent conductivity and unique 3D interconnected network are ideal matrices for composite electrochemical materials, but it is difficult to meet the demand of high capacity. Here, uniform α-Fe2O3 nanoparticles with narrow gap (~1.4 nm) were immobilized on CNTs through N-doped carbon (α-Fe2O3/CNTs-NC) that can address these issues. As an advanced LIBs anode, the electrode displays unprecedented specific capacity (1173 mAh/g at 0.2 A/g) and outstanding rate behavior (716.4 mAh/g at 5.0 A/g after 1200 cycles), which are even superior to the theoretical capacity (1007 mAh/g) and the performance of most reported Fe2O3-based anodes. Homogeneous nano-sized α-Fe2O3 with a narrow gap highly shortens the diffusion path for Li+ transport, exposes quite sufficient active sites, and prevents the volume change. Moreover, the 3D backbone of CNTs with a more homogeneously distributed electric field can enhance conductivity, and tightly contact with α-Fe2O3 by NC, then obtain robust structural stability, which boosts LIBs in storage capacity, rate capability, and cycling stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号